Total no. of possible outcomes when 2 dice are thrown = 6×6 = 36 which are

{ (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) }

**(i) E ⟶ event of 5 not coming up on either of them**

No. of favourable outcomes = 25 which are

{ (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) } Probability, P(E) = (No.of favorable outcomes)/(Total no.of possible outcomes)

P(E) = 25/36

**(ii) E ⟶ event of 5 coming up at least once** {(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (5, 1) (5, 2) (5, 3) (5, 4) (5, 6) (6, 5)}

P(E) = 11/36

**(iii) E ⟶ event of getting 5 on both dice**

No. of favourable outcomes = 1 { (5, 5) }

P(E) = 1/36