**Here, **

**The variable are 1,2, 3,…,9,10**

**n = 10**

**∴ Standard deviation,**

\(σ=\sqrt\frac{\sum_{i=1}^{10} x_i^2}{10}\)-\((\frac{\sum_{i=1}^{10} x_i}{10})^2\)

=\(\sqrt\frac{1}{10}.\frac{10(10+1)(20+1)}{6}-\)\((\frac{10(10+1)}{2.10})^2\)

=\(\sqrt\frac{11.21}{6}-(\frac{11}{2})^2\)

=\(\sqrt\frac{77}{2}-\frac{121}{4}\)

= \(\frac{1}{2}\sqrt {154-121}\)

= \(\frac{1}{2}\sqrt {33}\)

= 2.83.