No. of accidents (x) 
No.of days (f) 
Fx 
0 
46 
0 
1 
x 
x 
2 
y 
2y 
3 
25 
75 
4 
10 
40 
5 
5 
25 

N = 200 
\(\sum\)fx = x + 2y + 140 
Given,
N = 200
= 46 + x + y + 25 + 10 + 5 = 200
= x + y = 200 – 46 – 25 – 10 – 5
= x + y = 114 (i)
And Mean = 1.46
\(\frac{\sum fx}{N}=1.46\)
\(=\frac{x+2y+140}{200}=1.46\)
= x + 2y + 140 = 292
= x + 2y = 292 – 140
= x + 2y = 152 (ii)
Subtract (i) from (ii), we get
X + 2y – x – y = 152 – 114
y = 38
Put the value of y in (i), we get
x = 114 – 38 = 76
No. of accidents 
No. of days 
Cumulative frequency 
0 
46 
46 
1 
76 
122 
2 
38 
160 
3 
25 
185 
4 
10 
195 
5 
5 
200 

N = 200 

We have,
N = 200
\(\frac{N}{2}=\frac{200}{2}=100\)
The cumulative frequency just more than \(\frac{N}{2}\) is 122 so the median is 1