# Draw a rough sketch and find the area of the region bounded by the two parabolas y^2 = 4x and x^2 = 4y

16 views

closed

Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.

+1 vote
by (22.8k points)
selected by

To find the area bounded by

y2 = 4x

y = $2\sqrt{x}$ ....(i)

And x2 = 4y

y = $\frac{x^2}{4}$ ....(ii)

On solving the equation (i) and (ii),

$\big(\frac{x^2}{4}\big)^2$ = 4x

Or, x4 – 64x = 0

Or, x(x3 – 64) = 0

Or, x = 0, 4

Then y = 0, 4

Equation (i) represents a parabola with vertex (0, 0) and axis as x – axis. Equation (ii) represents a parabola with vertex (0, 0) and axis as y - axis.

Points of intersection of the parabola are (0, 0) and (4, 4).

A rough sketch is given as: - Now the bounded area is the required area to be calculated, Hence,

Bounded Area, A = [Area between the curve (i) and x axis from 0 to 4] – [Area between the curve (ii) and x axis from 0 to 4] On integrating the above definite integration, Area of the region bounded by the parabolas y2 = 4x and x2 = 4y is $\frac{16}{3}$ sq. units.