**Solution:**

Let a be the positive integer and b = 6.

Then, by Euclid’s algorithm, a = 6q + r for some integer q ≥ 0 and r = 0, 1, 2, 3, 4, 5 because 0 ≤ r < 5.

So, a = 6q or 6q + 1 or 6q + 2 or 6q + 3 or 6q + 4 or 6q + 5.

(6q)^{2} = 36q^{2} = 6(6q^{2})

= 6m, where m is any integer.

(6q + 1)^{2} = 36q^{2} + 12q + 1

= 6(6q^{2} + 2q) + 1

= 6m + 1, where m is any integer.

(6q + 2)^{2} = 36q^{2} + 24q + 4

= 6(6q^{2} + 4q) + 4

= 6m + 4, where m is any integer.

(6q + 3)^{2} = 36q^{2} + 36q + 9

= 6(6q^{2} + 6q + 1) + 3

= 6m + 3, where m is any integer.

(6q + 4)^{2} = 36q^{2} + 48q + 16

= 6(6q^{2} + 7q + 2) + 4

= 6m + 4, where m is any integer.

(6q + 5)^{2} = 36q^{2} + 60q + 25

= 6(6q^{2} + 10q + 4) + 1

= 6m + 1, where m is any integer.

**Hence, The square of any positive integer is of the form 6m, 6m + 1, 6m + 3, 6m + 4 and cannot be of the form 6m + 2 or 6m + 5 for any integer m.**