Calculate the self-gravitational potential energy of matter forming a. a thin uniform shell of mass M and radius R, b. a uniform sphere of mass m

128 views
in Physics
closed
Calculate the self-gravitational potential energy of matter forming a. a thin uniform shell of mass M and radius R, b. a uniform sphere of mass m and radius R.

by (75.0k points)
selected

In the process of formation of body, work has to be done by an external agent bit by bit to build up the body. This energy of the external agent is stored as gravitational energy. This is called te self -gravitation potential ennergyy or gravitational energy of mutual gravitational interaction.
a. Consider a sphere of any radius x.
Mass of the sphere =4pi//3x^(3)rho where rho= density of mass
Gravitation potential of the surface =-4pi//3Grhox^(2)
This is also the work done in adding unit mass to the sphere by the external agent. when the thickness is increased by dx, mass added by the agent is 4pix^(x)dxrho.
Therefore, work done by agent in increasing the surface from x to x is dx
(-(4pi)/3grhox^(2))(4pix^(2)xrho)=(16pi^(2))/3Grho^(2)x^(4)dx
Therefore, total work done by the agent
=-(16pi^(2)Grho^(2))/3 int_(0)^(R)x^(4) dx=-(16pi^(2)rho^(2)R^(5))/15
Now, rho=m/((4pi)/3R^(3))=(3m)/(4piR^(3))
Therefore, U (self-energy)=-(16pi^(2)R^(5)G)/15xx(9m^(2))/(16pi2R^(6))
=-3/5(GM^(2))/R
b. Consier the shell when mass m has already been piled up by the agent.
Then, potential of the shell =-GM//R
This is also the work done by the agent in adding another unit mass to the shell. Therefore, the elementary work done in adding an elementary mass dm is -Gm//R dm.
Therefore, U (self-potential energy)=-1/2Gm^(2)//R`