(i) निकट वाले पृष्ट से देखने पर : मन गोले का केंद्र C है तथा बुलबुला O पर है. जहाँ OC = 2 सेमी | बिंदु O से चलने वाली प्रकाश-किरणें, गोले के पृष्ट से अपवर्तित होकर, बिंदु I से आती प्रतीत होती है | जो कि O का आभासी प्रतिबिम्ब है | अतः बुलबुला बिंदु I पर दिखाई देगा | गोलीय पृष्ट पर अपवर्तन के लिए,
`(n)/(v)-(1)/(u)=(n-1)/(R)" "...(i)`
जहाँ R गोलीय पृष्ट की त्रिज्या है | यहाँ प्रकार काँच से वायु में जा रहा है, अतः
`n=""_(g)n_(a)=(1)/(""_(a)n_(g))=(1)/(1.5)=(2)/(3)`
यहाँ `u =PO=PC-OC=5` सेमी `-2` सेमी `=3` सेमी, `PC = + 5 ` सेमी `v = PI=?` तथा ये मान समीकरण (i) में रखने पर
`(2//3)/(v)-(1)/(3"सेमी")=((2//3)-1)/(+5"सेमी ")` |
हल करने पर, `v = + 2.5 ` सेमी | अतः निकट वाले पृष्ट के देखने पर, बुलबुला काँच के भीतर पृष्ट से 2.5 सेमी के दुरी पर दिखाई देगा |
(ii) दूर देखने पृष्ट से देखने पर : पुनः बुलबुले O से चलने वाली किरणें, गोले के पृष्ट से अपवर्तित होकर, बिंदु I से आती प्रतीत होती है अतः: बुलबुले बिंदु I पर दिखाई देगा | इस स्थिति में
`n=""_(g)n_(a)=2//3` ( पहले की तरह )
प्रश्नानुशार, ` u = PO = PC + CO =-5` सेमी `-2` सेमी
`=-7` सेमी,
`R = PC = - 5` सेमी तथा `v = PI = ?`
ये मान समीकरण (i) में रखने पर
`(2//3)/(v)+(1)/(7"सेमी ")=((2//3)-1)/(-5"सेमी ")`.
हल करने पर ` v =- 8.75` सेमी
अतः दूर वाले पृष्ट से देखने पर, बुलबुला काँच के भीतर पृष्ट से सेमी की दुरी पर दिखाई देगा |