# NISQ+: Boosting quantum computing power by approximating quantum error correction

@article{Holmes2020NISQBQ, title={NISQ+: Boosting quantum computing power by approximating quantum error correction}, author={Adam Holmes and Mohammad Reza Jokar and Ghasem Pasandi and Yongshan Ding and Massoud Pedram and Frederic T. Chong}, journal={2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)}, year={2020}, pages={556-569} }

Quantum computers are growing in size, and design decisions are being made now that attempt to squeeze more computation out of these machines. In this spirit, we design a method to boost the computational power of nearterm quantum computers by adapting protocols used in quantum error correction to implement “Approximate Quantum Error Correction (AQEC):” By approximating fully-fledged error correction mechanisms, we can increase the compute volume (qubits $\times$ gates, or “Simple Quantum… Expand

#### Figures, Tables, and Topics from this paper

#### 15 Citations

QECOOL: On-Line Quantum Error Correction with a Superconducting Decoder for Surface Code

- Computer Science, Physics
- 2021 58th ACM/IEEE Design Automation Conference (DAC)
- 2021

An online-QEC algorithm and its hardware implementation with SFQ based superconducting digital circuits is proposed and a key building block of the proposed hardware with an SFQ cell library is designed and evaluated by the SPICE-level simulation. Expand

Practical Quantum Computing: The value of local computation.

- Computer Science, Physics
- 2020

This paper discusses three key bottlenecks in near-term quantum computers: bandwidth restrictions arising from data transfer between central processing units (CPUs) and quantumprocessing units (QPUs), latency delays in the hardware for round-trip communication, and timing restrictions driven by high error rates. Expand

Quantum DevOps: Towards Reliable and Applicable NISQ Quantum Computing

- Computer Science
- 2020 IEEE Globecom Workshops (GC Wkshps
- 2020

The need for the novel concept of Quantum DevOps is described and motivated, which entails regular checking of the reliability of NISQ Quantum Computing (QC) instances, to select the best matching (cloud) QC instance and having it integrated directly with the processes of development, testing and finally the operations of quantum based algorithms and systems enables the Quantum Dev Ops concept. Expand

LILLIPUT: A Lightweight Low-Latency Lookup-Table Based Decoder for Near-term Quantum Error Correction

- Computer Science, Physics
- ArXiv
- 2021

To enable real-time decoding in near-term QEC, LILLIPUT– a Lightweight Low Latency Look-Up Table decoder is proposed, which tolerates an error on any operation in the quantum hardware, including gates and measurement, and the number of tolerated errors grows with the size of the code. Expand

A scalable and fast artificial neural network syndrome decoder for surface codes

- Computer Science, Physics
- ArXiv
- 2021

The development of an artificial neural network (ANN) based scalable and fast syndrome decoder capable of decoding surface codes of arbitrary shape and size with data qubits suffering from the depolarizing error model is reported. Expand

Superconducting quantum computer: a hint for building architectures

- Computer Science, Physics
- 2021 Symposium on VLSI Circuits
- 2021

The three-Y’s: regularity, modularity, and hierarchy to an architecture design of superconducting quantum computers, and a stacked heterogeneous structure of the quantum module are introduced. Expand

Superconducting Computing with Alternating Logic Elements

- Computer Science
- 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)
- 2021

Although superconducting single flux quantum (SFQ) technologies offer the potential for low-latency operation with energy dissipation of the order of attojoules per gate, their inherently… Expand

Noise-Aware Quantum Amplitude Estimation

- Physics
- 2021

In this paper we derive from simple and reasonable assumptions a Gaussian noise model for NISQ Quantum Amplitude Estimation (QAE). We provide results from QAE run on various IBM superconducting… Expand

Quantum error mitigation as a universal error-minimization technique: applications from NISQ to FTQC eras

- Physics
- 2020

Yasunari Suzuki, 2, ∗ Suguru Endo, † Keisuke Fujii, 4, 5 and Yuuki Tokunaga ‡ NTT Computer and Data Science Laboratories, NTT Corporation, Musashino 180-8585, Japan JST, PRESTO, 4-1-8 Honcho,… Expand

Semantic Convolutional Neural Network model for Safe Business Investment by Using BERT

- Computer Science
- 2020 Seventh International Conference on Social Networks Analysis, Management and Security (SNAMS)
- 2020

This work uses a natural language processing approach to propose a new real estate investment model based on online textual information and applies a transfer learning approach based on multiple online resources to recognize the house as valuable rental property in the real estate market. Expand

#### References

SHOWING 1-10 OF 70 REFERENCES

Taming the Instruction Bandwidth of Quantum Computers via Hardware-Managed Error Correction

- Computer Science
- 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
- 2017

It is shown that 99.999% of the instructions in the instruction stream of a typical quantum workload stem from error correction, and an architecture that delegates the task of quantum error correction to the hardware is proposed, QuEST (Quantum Error-Correction Substrate), which reduces instruction bandwidth demand of several key workloads by ftve orders of magnitude. Expand

State preservation by repetitive error detection in a superconducting quantum circuit

- Computer Science, Physics
- Nature
- 2015

The protection of classical states from environmental bit-flip errors is reported and the suppression of these errors with increasing system size is demonstrated, motivating further research into the many challenges associated with building a large-scale superconducting quantum computer. Expand

Parallel entangling operations on a universal ion-trap quantum computer

- Physics, Computer Science
- Nature
- 2019

Parallel two-qubit entangling gates are realized in an array of fully connected trapped-ion qubits, achieving a full-adder operation on a quantum processor with an average fidelity of 83.3 per cent. Expand

Quantum Volume

- 2017

As we build larger quantum computing devices capable of performing more complicated algorithms, it is important to quantify their power. The origin of a quantum computer’s power is already subtle,… Expand

Superconducting quantum circuits at the surface code threshold for fault tolerance

- Physics, Medicine
- Nature
- 2014

The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits. Expand

Implications of electronics constraints for solid-state quantum error correction and quantum circuit failure probability

- Physics
- 2011

In this paper we present the impact of classical electronics constraints on a solid-state quantum dot logical qubit architecture. Constraints due to routing density, bandwidth allocation, signal… Expand

Topological quantum memory

- Physics
- 2002

We analyze surface codes, the topological quantum error-correcting codes introduced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on a surface of nontrivial topology, and… Expand

Topological code Autotune

- Computer Science, Physics
- 2012

Autotune is designed to facilitate the precise study of real hardware running TQEC with every quantum gate having a realistic, physics-based error model, and is described a tool Autotune capable of performing this optimization automatically. Expand

Almost-linear time decoding algorithm for topological codes

- Physics, Mathematics
- 2017

In order to build a large scale quantum computer, one must be able to correct errors extremely fast. We design a fast decoding algorithm for topological codes to correct for Pauli errors and erasure… Expand

Quantum Computing in the NISQ era and beyond

- Computer Science, Physics
- Quantum
- 2018

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future, and the 100-qubit quantum computer will not change the world right away - but it should be regarded as a significant step toward the more powerful quantum technologies of the future. Expand