**(i)** ∵ ML || RQ

and ∠LMR and ∠MRQ

are interior angles on the same side of transverse MR.

∴ ∠LMR + ∠MRQ = 180°

∴ ∠MRQ = 180° - ∠LMR

= 180° - 130°

= 50°

∴ ∠PRQ = ∠MRQ = 50°

**(ii) **∠PML and ∠LMR are linear pair.

∴ ∠PML + ∠LMR = 180°

⇒ ∠PML = 180° - 130° = 50°

**(iii)** Now in triangle PQR, ∠PQR = 90°, ∠PRQ = 50°

And ∠QPR + ∠PQR + ∠PRQ = 180°

⇒ ∠QPR = 180° - ∠PQR - ∠PRQ

= 180° - 90° - 50°

= 180° - 140°

= 40°

**Clearly ∠LPM = ∠QPR = 40°.**