
(i) ∵ ML || RQ
and ∠LMR and ∠MRQ
are interior angles on the same side of transverse MR.
∴ ∠LMR + ∠MRQ = 180°
∴ ∠MRQ = 180° - ∠LMR
= 180° - 130°
= 50°
∴ ∠PRQ = ∠MRQ = 50°
(ii) ∠PML and ∠LMR are linear pair.
∴ ∠PML + ∠LMR = 180°
⇒ ∠PML = 180° - 130° = 50°
(iii) Now in triangle PQR, ∠PQR = 90°, ∠PRQ = 50°
And ∠QPR + ∠PQR + ∠PRQ = 180°
⇒ ∠QPR = 180° - ∠PQR - ∠PRQ
= 180° - 90° - 50°
= 180° - 140°
= 40°
Clearly ∠LPM = ∠QPR = 40°.