Let \( A \) and \( B \) are square matrices of same order such that \( |A|=|B|=1 \) and \( A(\operatorname{adj} A+\operatorname{adj} B)=B \). The value of \( |A+B| \) is
(A) \( -1 \)
(B) 1
(C) 0
(D) 2
2. If \( B B^{\prime}=I \), then \( A B^{-1} \) is
(A) \( B^{-1} A \)
(B) \( A^{-1} B \)
(C) \( B A^{-1} \)
(D) \( B^{-1} A^{-1} \)