# PQR is a triangle right angled at P and M is a point on QR such that PM ⟂ QR. Show that PM^2 = QM . MR.

2.5k views

edited

PQR is a triangle right angled at P and M is a point on QR such that PM ⟂ QR. Show that PM2 = QM . MR.

+1 vote
by (702 points) In right angled triangles

ΔRPQ & ΔPMR,

∠RPQ = ∠PMR = 90°

∠PRQ = ∠PRM (Common angle)

Then ∠PQR = ∠MPR (sum of angles is 180°)

$\therefore$ ΔRPQ $\sim$ ΔPMR (By AAA similarity criteria)

$\therefore$ $\frac{MR}{PR}=\frac{PM}{PQ}=\frac{PR}{QR}$ .........(1)

Similarly, in right angled triangle

ΔPMQ & ΔQPR,

∠PMQ = ∠QPR = 90°

∠PQM = ∠PQR  (Common angle)

Then ∠QPM = ∠PRQ  (Sum of angle is 180°)

$\therefore$ ΔPMQ $\sim$ ΔQPR   (By AAA similarity criteria)

$\therefore$ $\frac{PQ}{QR}=\frac{PM}{PR}=\frac{QM}{PQ}$  ..............(2)

From equation (1), we have

$\frac{MR}{PR}=\frac{PM}{PQ}$

$\Rightarrow \frac{MR}{PM}=\frac{PR}{PQ}$ ..........(3)

From equation (2), we have

$\frac{PM}{PR}=\frac{QM}{PQ}$

$\Rightarrow \frac{PM}{QM}=\frac{PR}{PQ}$  ..........(4)

From equation (3) and (4), we have

$\frac{PM}{QM}=\frac{QR}{PQ}=\frac{MR}{PM}$

$\Rightarrow \frac{PM}{QM}=\frac{MR}{PM}$

$\Rightarrow PM^2=QM.MR$

Hence proved