Fewpal
+1 vote
2.7k views
in Mathematics by (127k points)
edited by

In an equilateral triangle ABC, D is a point on side BC such that BD = 1/3 BC. Prove that 9 AD2 = 7 AB2.

1 Answer

+2 votes
by (9.9k points)
selected by
 
Best answer

Solution:

Given:   In an equilateral triangle ΔABC. The side BC is trisected at D such that BD = (1/3) BC.

To prove:  9AD2  = 7AB2 

Construction:  Draw AE ⊥ BC.

Proof :

In a ΔABC and ΔACE

AB = AC ( Given)

AE = AE ( common)

∠AEB = ∠AEC = 90°

∴ ΔABC ≅ ΔACE ( For RHS criterion)

BE = EC (By C.P.C.T)

BE = EC = BC / 2

In a right angled triangle ADE

AD2 = AE2 + DE2 ---------(1)

In a right angled triangle ABE

AB2 = AE2 + BE2 ---------(2)

From equ (1) and (2) we obtain

⇒ AD2  - AB2 =  DE2 - BE2 .

⇒ AD2  - AB2 = (BE – BD)2 - BE2 .

⇒ AD2  - AB2 = (BC / 2 – BC/3)2 – (BC/2)2 

⇒ AD2  - AB2 = ((3BC – 2BC)/6)2 – (BC/2)

⇒ AD2  - AB2 = BC2 / 36 – BC2 / 4 ( In a equilateral triangle ΔABC, AB = BC = CA)

⇒ AD2 = AB2 + AB2 / 36 – AB2 / 4

⇒ AD2 = (36AB2 + AB2– 9AB2) / 36

⇒ AD2 = (28AB2) / 36

⇒ AD2 = (7AB2) / 9

9AD2 = 7AB2 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...