Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
2.7k views
in Algebra by (102k points)
closed by

The solution of the equations

5x1 + x2 + x3 + x4 = 4

x1 + 7x2 + x3 + x4 = 12

x1 + x2 + 6x3 + x4 = - 5

x1 + x2 + x3 + 4x4 = - 6

By Gauss - Jordan method is


1. -1, -2, 1, 2
2. -1, -2, -1, 2
3. -1, 2, -1, 2
4. 1, 2, -1, -2
5.

1 Answer

0 votes
by (103k points)
selected by
 
Best answer
Correct Answer - Option 4 : 1, 2, -1, -2

Concept:

Gauss-Jordan Method:

  • This method is used to simplify an augmented matrix to its reduced-row echelon form.
  • The following are the steps that must be followed while using the Gauss-Jordan Elimination method -
  1. Write the system as an augmented matrix.
  2. Look at the first entry in the first row. Make this entry into a 1 and all other entries in that column 0s. This is called pivoting the matrix about this element.
  3. Once this is done, move down the diagonal to the second entry of the second row and pivot about this entry.
  4. Continue until the whole matrix is in row-reduced form.
  5. Solve for the values of variables.


Calculation:

Given,

5x1 + x2 + x3 + x4 = 4              ...(1)

x1 + 7x2 + x3 + x4 = 12            ...(2)

x1 + x2 + 6x3 + x4 = - 5           ....(3)

x1 + x2 + x3 + 4x4 = - 6           .....(4)

This system of equations can be written in the form of matrices as follows -

\(\left[ {\begin{array}{*{20}{c}} 5&1&1&{ 1}\\ 1&7&1&1\\ 1&{ 1}&{ 6}&1 \\1&1&1&4\\ \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}}\\ {{x_3}\\{x_4}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { 4}\\ {12}\\ { - 5}\\{-6} \end{array}} \right]\)

⇒ [A][X] = [D]          ....(5)

Here,

\([A] = \left[ {\begin{array}{*{20}{c}} 5&1&1&{ 1}\\ 1&7&1&1\\ 1&{ 1}&{ 6}&1 \\1&1&1&4\\ \end{array}} \right]\)

\([D] = \left[ {\begin{array}{*{20}{c}} { 4}\\ {12}\\ { -5}\\-6 \end{array}} \right]\)

\([X] = \left[ {\begin{array}{*{20}{c}} {x_1}\\ {x_2}\\ {x_3}\\{x_4} \end{array}} \right]\)

Step 1: Writing Augment Matrix

\(\therefore[A~\vdots ~D] = \left[ {\begin{array}{*{20}{c}} 5&1&1&1\\ 1&7&1&1\\ 1&1&6&1\\1&1&1&4 \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { 4}\\ {12}\\ { - 5}\\-6 \end{array}} \right]\)

Step 2: Applying elementary transformations or pivoting of the augment matrix

a) R1\(\frac{1}{5}\)R1

\( = \left[ {\begin{array}{*{20}{c}} 1&0.20&{0.20}&0.20\\ 1&7&1&1\\ 1&{ 1}&{ 6}&1\\1&1&1&4\end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { 0.80}\\ {12}\\ { - 5} \\-6\end{array}} \right]\)

b) R2 → R2 - R1; R3 → R3 - R1; R4 → R4 - R1

\( = \left[ {\begin{array}{*{20}{c}} 1&0.2&{0.2}&0.2\\ 0&6.8&0.8&0.8\\ 0&{ 0.8}&{ 5.8}&0.8\\0&0.8&0.8&3.8 \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { 0.8}\\ {11.2}\\ { -5.8}\\-6.8 \end{array}} \right]\)

c) R2\(\frac{1}{6.8}\)R2

\( = \left[ {\begin{array}{*{20}{c}} 1&0.2&{0.2}&0.2\\ 0&1&\frac{2}{17}&\frac{2}{17}\\ 0&{ 0.8}&{ 5.8}&0.8\\0&0.8&0.8&3.8 \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { 0.8}\\ {\frac{28}{17}}\\ { -5.8}\\-6.8 \end{array}} \right]\)

d) R3 → R3 - 0.8R2; R4 → R4 - 0.8R2

\( = \left[ {\begin{array}{*{20}{c}} 1&0.2&{0.2}&0.2\\ 0&1&\frac{2}{17}&\frac{2}{17}\\ 0&{ 0}&{ \frac{97}{17}}&\frac{12}{17}\\0&0&\frac{12}{17}&\frac{63}{17} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} {\frac{4}{5}}\\ {\frac{28}{17}}\\ { -\frac{121}{17}}\\-\frac{138}{17} \end{array}} \right]\)

e) R3\(\frac{17}{97}\)R3

\( = \left[ {\begin{array}{*{20}{c}} 1&0.2&{0.2}&0.2\\ 0&1&\frac{2}{17}&\frac{2}{17}\\ 0&{ 0}&{ 1}&\frac{12}{97}\\0&0&\frac{12}{17}&\frac{63}{17} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} {\frac{4}{5}}\\ {\frac{28}{17}}\\ { -\frac{121}{97}}\\-\frac{138}{17} \end{array}} \right]\)

f) R4 → R4 - \(\frac{12}{17}\)R3

\( = \left[ {\begin{array}{*{20}{c}} 1&0.2&{0.2}&0.2\\ 0&1&\frac{2}{17}&\frac{2}{17}\\ 0&{ 0}&{ 1}&\frac{12}{97}\\0&0&0&\frac{351}{97} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} {\frac{4}{5}}\\ {\frac{28}{17}}\\ { -\frac{121}{97}}\\-\frac{702}{97} \end{array}} \right]\)

Step 3: Solving for variables -

Now, the reduced equations can be written as -

x1 + 0.2x2 + 0.2x3 + 0.2x4\(\frac{4}{5}\)       ...(6)

x2 + \(\frac{2}{17}\)x3 + \(\frac{2}{17}\)x4 = \(\frac{28}{17}\)                ...(7)

x3\(\frac{12}{97}\)x4 = \(-\frac{121}{97}\)                       ...(8)

\(\frac{351}{97}\)x4 = \(-\frac{702}{97}\)                           ....(9)

Solving (6), (7), (8), and (9)

x4 = -2

x3 = -1

x2 = 2

x1 = 1

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...