Correct Answer - Option 3 : 49%

Explanation:

Plant capacity factor:

- It is the ratio of actual energy produced to the maximum possible energy that could have been produced during a given period.

\(Plant\;capacity\;factor = \frac{{{\rm{Actual\;energy\;produced}}}}{{Maximum\;energy\;that\;could\;have\;been\;produced}}\)

\( = \frac{{Average\;demand \times T}}{{Plant\;capacity \times 100}}\)

\(= \frac{{Average\;demand}}{{Plant\;capacity}}\)

\(Annual\;plant\;capacity\;factor = \frac{{{\rm{Annual\;kWh\;output}}}}{{Plant\;capacity \times 8760}}\)

**Calculation:**

**Given:**

Annual output =150 × 106 kWh, plant capacity = 35 MW = 35000 W

\(Annual\;plant\;capacity\;factor = \frac{{{\rm{Annual\;kWh\;output}}}}{{Plant\;capacity \times 8760}}\)

\(Annual\;plant\;capacity\;factor = \frac{150 \times 10^6}{35000 \times 8760}\)

\(Annual\;plant\;capacity\;factor = 0.4892\)

Annual plant capacity factor = 0.49 = 49%