Correct Answer - Option 3 : 40
Concept:
KP = position error constant = \(\mathop {\lim }\limits_{s \to 0} G\left( s \right)H\left( s \right)\)
Kv = velocity error constant = \(\mathop {\lim }\limits_{s \to 0} sG\left( s \right)H\left( s \right)\)
Ka = acceleration error constant = \(\mathop {\lim }\limits_{s \to 0} {s^2}G\left( s \right)H\left( s \right)\)
Steady state error for different inputs is given by
Input
|
Type -0
|
Type - 1
|
Type -2
|
Unit step
|
\(\frac{1}{{1 + {K_p}}}\)
|
0
|
0
|
Unit ramp
|
∞
|
\(\frac{1}{{{K_v}}}\)
|
0
|
Unit parabolic
|
∞
|
∞
|
\(\frac{1}{{{K_a}}}\)
|
From the above table, it is clear that for type – 1 system, a system shows zero steady-state error for step-input, finite steady-state error for Ramp-input and \(\infty \) steady-state error for parabolic-input.
Calculation:
The given forward path transfer function is \(G\left( s \right) = \frac{K}{{s\left( {s + 2} \right)}}\)
Velocity error constant, \({K_v} = \mathop {\lim }\limits_{s \to 0} s \times \frac{K}{{s\left( {s + 2} \right)}} = \frac{K}{2}\)
Steady-state error \( = \frac{2}{K} = 0.05\)
⇒ K = 40