Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
407 views
in Probability by (108k points)
closed by
If n1, n2 are the sizes, x̅1, x̅2 the means, σ1, σ2 the standard deviations, the variance of the combined series is (where d1 = x̅1 – x̅ and d2 = x̅2 – x̅)       
1. \(\left( {\frac{1}{{{n_1}}} + \frac{1}{{{n_2}}}} \right)\left( {{n_1}\left( {\sigma _1^2 + d_1^2} \right) + {n_2}\left( {\sigma _2^2 + d_2^2} \right)} \right)\)
2. \(\frac{1}{{{n_1} + {n_2}}}\left( {{n_1}\left( {\sigma _1^2 + d_1^2} \right) + {n_2}\left( {\sigma _2^2 + d_2^2} \right)} \right)\)
3. \(\left( {\frac{1}{{{n_1}}} - \frac{1}{{{n_2}}}} \right)\left( {{n_1}\left( {\sigma _1^2 + d_1^2} \right) + {n_2}\left( {\sigma _2^2 + d_2^2} \right)} \right)\)
4. \(\frac{1}{{{n_1} - {n_2}}}\left( {{n_1}\left( {\sigma _1^2 + d_1^2} \right) + {n_2}\left( {\sigma _2^2 + d_2^2} \right)} \right)\)

1 Answer

0 votes
by (101k points)
selected by
 
Best answer
Correct Answer - Option 2 : \(\frac{1}{{{n_1} + {n_2}}}\left( {{n_1}\left( {\sigma _1^2 + d_1^2} \right) + {n_2}\left( {\sigma _2^2 + d_2^2} \right)} \right)\)

Explanation:

Suppose the values in the first group are x1i, i = 1,2,……,n1 and those in the second group are x2i, i = 1,2,……..,n2.

Now since x̅1 and x̅2 are the means so, x̅1=\(\frac{1}{{{n_1}}}\mathop \sum \limits_{i = 1}^{{n_1}} {x_{1i}}\) and  x̅2 =\(\frac{1}{{{n_2}}}\mathop \sum \limits_{i = 1}^{{n_2}} {x_{2i}}\)  

If the mean of the combined series is x̅, then x̅ = \(\frac{{{n_1}\overline {{x_1}} + {n_2}\overline {{x_2}} }}{{{n_1} + {n_2}}}\)

Again σand σ2 are the standard deviations. So, variance \({\rm{\sigma }}_1^2 = \frac{1}{{{n_1}}}\mathop \sum \limits_{i = 1}^{{n_1}} {\left( {{x_{1i}} - {{{\rm{\bar x}}}_1}{\rm{\;}}} \right)^2}\;\) and \({\rm{\sigma }}_2^2 = \frac{1}{{{n_2}}}\mathop \sum \limits_{i = 1}^{{n_2}} {\left( {{x_{2i}} - {{{\rm{\bar x}}}_2}{\rm{\;}}} \right)^2}.\)

Now, the sum of squares of the deviation of the values of the two groups from x̅ is:

\(\Rightarrow\mathop \sum \limits_{i = 1}^{{n_1}} {\left( {{x_{2i}} - \bar x} \right)^2} + \mathop \sum \limits_{i = 1}^{{n_2}} {\left( {{x_{2i}} - \overline {x{\rm{\;}}} } \right)^2}\)

Now,

\(\mathop \sum \limits_{i = 1}^{{n_1}} {\left( {{x_{1i}} - \bar x} \right)^2}\;=\mathop \sum \limits_{i = 1}^{{n_1}} \;{\left\{ {\left( {{x_{1i}} - {\rm{\;}}\overline {{x_1}} } \right) + \left( {\overline {{x_1}} - \bar x{\rm{\;}}} \right)} \right\}^2}\)

\(=\mathop \sum \limits_{i = 1}^{{n_1}} {\left( {{x_{1i}} - {{{\rm{\bar x}}}_1}{\rm{\;}}} \right)^2}\;+2\left( {\overline {{x_i}} - \bar x} \right)\mathop \sum \limits_{i = 1}^{{n_1}} \left( {{x_{1i}} - \overline {{x_1}} } \right) + {n_1}{\left( {\overline {{x_1}} - \bar x} \right)^2}\)

\( = {n_1}\sigma _1^2 + \;{n_1}{\left( {\overline {{x_1}} - \bar x} \right)^2},\;\;\;\mathop \sum \limits_{i = 1}^{{n_1}} \left( {{x_{1i}} - \overline {{x_1}} } \right) = 0\)

Similarly, \(\mathop \sum \limits_{i = 1}^{{n_2}} {\left( {{x_{2i}} - \overline {x{\rm{\;}}} } \right)^2} = {n_2}\sigma _2^2 + {n_2}{\left( {\overline {{x_2}} - \bar x} \right)^2}\)

If the variation of the combined series is σ2,

Then, \({\sigma ^2} = \frac{1}{{{n_1} + {n_2}}}\left\{ {\mathop \sum \limits_{i = 1}^{{n_1}} {{\left( {{x_{2i}} - \bar x} \right)}^2}\; + {\rm{\;}}\mathop \sum \limits_{i = 1}^{{n_2}} {{\left( {{x_{2i}} - \overline {x{\rm{\;}}} } \right)}^2}} \right\}\)

\( = \frac{{{n_1}\sigma _1^2 + {n_2}\sigma _2^2}}{{{n_1} + {n_2}}}+\frac{{{n_1}{{\left( {\overline {{x_1}} - \bar x} \right)}^2} + {n_2}{{\left( {\overline {{x_2}} - \bar x} \right)}^2}}}{{{n_1} + {n_2}}}\)

\(=\frac{{{n_1}\sigma _1^2 + {n_2}\sigma _2^2}}{{{n_1} + {n_2}}}+\frac{{{n_1}d_1^2 + {n_2}d_2^2}}{{{n_1} + {n_2}}}\)

\(=\frac{1}{{{n_1} + {n_2}}}\left( {{n_1}\left( {\sigma _1^2 + d_1^2} \right) + {n_2}\left( {\sigma _2^2 + d_2^2} \right)} \right)\)

 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...