Correct Answer - Option 3 :
m2/s
Concept:
Fick’s Law of diffusion states that “the mass flux of a constituent per unit area is proportional to the concentration gradient”.
\(J = - D\frac{{dc}}{{dx}}\)
where
J = mass flux of constituent per unit area, \(\frac{{dc}}{{dx}}= concentration~ gradient\)
-ve sign indicates that the concentration gradient decreasing in the direction of mass transfer.
Calculation:
\(J = \frac{{\dot m}}{A} = kg/{m^2}s\)
\(\frac{{dc}}{{dx}} = \frac{{kg/{m^3}}}{m} = kg/{m^4}\)
∴ \(D = \frac{J}{{\frac{{dc}}{{dx}}}}\)
\( \Rightarrow D = \frac{{\frac{{kg}}{{{m^2}s}}}}{{\frac{{kg}}{{{m^4}}}}}\)
\( \Rightarrow D = \frac{{kg}}{{{m^2}s}} \times \frac{{{m^4}}}{{kg}}\)
∴ D = m2/s