Correct Answer - Option 2 : 15.2 kW and 20 kW
Concept:
The total transmitted power for an AM system is given by:
\({P_t} = {P_c}\left( {1 + \frac{{{μ^2}}}{2}} \right)\)
Pc = Carrier Power
μ = Modulation Index
The above expression can be expanded to get:
\({P_t} = {P_c} + P_c\frac{{{μ^2}}}{2}\)
The total power is the sum of the carrier power and the sideband power, i.e.
\({P_s} = P_c\frac{{{μ^2}}}{2}\)
Calculation:
Given Ps = 4.85 kW and μ = 0.8.
We can write:
\({P_s} = P_c\frac{{{μ^2}}}{2}=4.85k\)
\( P_c\frac{{{(0.8)^2}}}{2}=4850\)
\(P_c=\frac{4850\times 2}{0.64}\)
Pc ≈ 15.2 kW
Now, the total power radiated will be:
\({P_t} = {P_c} + P_s\)
Pt = 15.2 + 4.85
Pt = 20 kW