# The positive bending moment coefficient at the middle of the end-span of a continuous one way slab is

118 views
in General
closed
The positive bending moment coefficient at the middle of the end-span of a continuous one way slab is
1. $\left( {\frac{{{w_l}}}{{10}} + \frac{{{w_d}}}{{12}}} \right){L^2}$
2. $\left( {\frac{{{w_l}}}{9} + \frac{{{w_d}}}{{10}}} \right){L^2}$
3. $\left( {\frac{{{w_l}}}{{12}} + \frac{{{w_d}}}{{16}}} \right){L^2}$
4. $\left( {\frac{{{w_l}}}{9} + \frac{{{w_d}}}{{12}}} \right){L^2}$

by (48.1k points)
selected

Correct Answer - Option 1 : $\left( {\frac{{{w_l}}}{{10}} + \frac{{{w_d}}}{{12}}} \right){L^2}$

Concept

As per Table 12 of IS-456:2000, the bending moment coefficients for dead and live load are given below:

 Location BM Coefficients for dead load BM Coefficients for Live load Bending moment Middle of end span 1/12 1/10 $\left( {\frac{{{w_l}}}{{10}} + \frac{{{w_d}}}{{12}}} \right){L^2}$ Interior support of end span -1/10 -1/9 $-\left( {\frac{{{w_l}}}{9} + \frac{{{w_d}}}{{10}}} \right){L^2}$ Middle of intermediate span 1/16 1/12 $\left( {\frac{{{w_l}}}{{12}} + \frac{{{w_d}}}{{16}}} \right){L^2}$ Interior support of intermediate span -1/12 -1/9 $-\left( {\frac{{{w_l}}}{9} + \frac{{{w_d}}}{{12}}} \right){L^2}$

∴ Option 1 is correct