Correct Answer - Option 3 :
\(- \sqrt 2\)
By applying AM ≥ GM inequality, on the numbers sin4 α, 4 cos4 β, 1 and 1, we get
\(\frac{{{\rm{si}}{{\rm{n}}^4}{\rm{\alpha }} + 4{\rm{co}}{{\rm{s}}^4}{\rm{\beta }} + 2}}{4} \ge {\left( {\left( {{\rm{si}}{{\rm{n}}^4}{\rm{\alpha }}} \right)\left( {4{\rm{co}}{{\rm{s}}^4}{\rm{\beta }}} \right)\cdot1\cdot1} \right)^{\frac{1}{4}}}\)
\(= {\rm{si}}{{\rm{n}}^4}{\rm{\alpha }} + 4{\rm{co}}{{\rm{s}}^4}{\rm{\beta }} + 2 \ge 4\sqrt 2 {\rm{sin\alpha \;cos\beta }}\)
But, it is given that
\({\rm{si}}{{\rm{n}}^4}{\rm{\alpha }} + 4{\rm{co}}{{\rm{s}}^4}{\rm{\beta }} + 2 = 4\sqrt 2 {\rm{sin\alpha \;cos\beta }}\)
So sin4 α = 4 cos4 β = 1
[In AM ≥ GM, equality holds when an given positive quantities are equal.]
\(\Rightarrow {\rm{\;sin\alpha }} = 1{\rm{\;and\;sin\beta }} = \frac{1}{{\sqrt 2 }}{\rm{\;}}\) ----(2)
[∵ α, β ∈ [0, π]]
Now, cos (α + β) – cos (α – β)
= -2 sin α sin β
\(\left[\because {{\rm{cosC}} - {\rm{cosD}} = 2{\rm{sin}}\frac{{{\rm{C}} + {\rm{D}}}}{2}{\rm{sin}}\frac{{{\rm{D}} - {\rm{C}}}}{2}} \right]\)
\(= - 2 \times 1 \times \frac{1}{{\sqrt 2 }}{\rm{\;}}\) [from Eq,(1)]
\(= - \sqrt 2\)