# In slip test on a 3-phase alternator, the maximum and minimum voltage per phase are V1 and V2 respectively whereas the maximum and minimum phase curre

27 views
in General
closed
In slip test on a 3-phase alternator, the maximum and minimum voltage per phase are V1 and V2 respectively whereas the maximum and minimum phase currents are found to be I1 and I2 respectively. The value of the d-axis synchronous reactance xd and q-axis synchronous reactance xq are determined as
1. ${x_d} = \frac{{{V_1}}}{{{I_1}}},\;{x_q} = \frac{{{V_2}}}{{{I_2}}}$
2. ${x_d} = \frac{{{V_1}}}{{{I_2}}},\;{x_q} = \frac{{{V_2}}}{{{I_1}}}$
3. ${x_d} = \frac{{{V_1}}}{{\left( {{I_{1 - }}{I_2}} \right)}},\;{x_q} = \frac{{{V_2}}}{{({I_1} + {I_2})}}$
4. ${x_d} = \frac{{({V_1} + {V_2})}}{{({I_1} - {I_2})}},\;{x_q} = \frac{{\left( {{V_1} - {V_2}} \right)}}{{\left( {{I_2} + {I_1}} \right)}}$

by (37.3k points)
selected

Correct Answer - Option 2 : ${x_d} = \frac{{{V_1}}}{{{I_2}}},\;{x_q} = \frac{{{V_2}}}{{{I_1}}}$
$\begin{array}{l} {x_d} = \frac{{maximum\;vlotage}}{{minimum\;current}} = \frac{{{V_1}}}{{{I_2}}}\;\\ {x_q} = \frac{{minimum\;vlotage}}{{maxmum\;current}} = \frac{{{V_2}}}{{{I_1}}}\; \end{array}$