Correct Answer - Option 2 : 0.27R

**Explanation:**

Tangent length of the curve is given by,

\({\rm{T}} = {\rm{R}}\tan \frac{{\rm{Δ }}}{2}{\rm{\;}}\)

Where,

Δ = Deviation or deflection angle in degrees

Δ = Deflection angle

R = Radius of curve in m

**Calculation:**

Given,

Δ = 30°

Tangent length is given by, \({\rm{T}} = {\rm{R}}\tan \frac{{\rm{Δ }}}{2}{\rm{\;}}\)

T = R × tan(30°/2) = 0.267R ≈ 0.27R