Correct Answer - Option 3 : log y = x - x

^{2} + C

__Calculation:__

The given differential equation \(\rm \frac{dy}{dx}\) + 2xy = y, is in the variable separable form.

Separating the variables, we get:

⇒ \(\rm \frac{dy}{dx}\) = y(1 - 2x)

⇒ \(\rm \frac{1}{y}\ dy\) = (1 - 2x) dx

Integrating both sides, we get:

⇒ ∫\(\rm \frac{1}{y}\ dy\) = ∫(1 - 2x) dx

⇒ **log y = x - x2 + C**.