LIVE Course for free

Rated by 1 million+ students
Get app now
0 votes
14 views
in Continuity and Differentiability by (54.3k points)
closed by
\(\rm \displaystyle\lim_{x\rightarrow 2}\frac{x^2-3x+2}{\sqrt{x}-\sqrt{2}}\) is equal to
5. 1

1 Answer

0 votes
by (30.0k points)
selected by
 
Best answer
Correct Answer - Option 2 : \(2 \sqrt{2} \)

Concept:

A fraction whose numerator and denominator both tend to zero as x → a is an example of an indeterminate form written as 0/0. it has no definite values. other indeterminate forms are: ∞/∞, ∞ - ∞, 0 x ∞, 1, 00, ∞0. indeterminate form are not any definite number and hence are not acceptable as limits. to find limits in such cases, we use the L'hospital's rule, rationalization method, dividing the  numerator and denominator by the higher power or factorization method. 

Calculation:

\(\rm \displaystyle\lim_{x\rightarrow 2}\frac{x^2-3x+2}{\sqrt{x}-\sqrt{2}}\) This is 0/0 form.

Here we use  factorization method

\(\rm \displaystyle\lim_{x\rightarrow 2}\frac{(x-2)(x-1)}{\sqrt{x}-\sqrt{2}}\)

\(\rm \displaystyle\lim_{x\rightarrow 2}\frac{(\sqrt{x}-\sqrt{2})(\sqrt{x}+\sqrt{2})(x-1)}{\sqrt{x}-\sqrt{2}}\)

\(\rm \displaystyle\lim_{x\rightarrow 2}{(\sqrt{x}+\sqrt{2})(x-1)} = \rm {(\sqrt{2}+\sqrt{2})(2-1)} = 2\sqrt{2}\)

Hence, option 2 is the correct answer.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...