LIVE Course for free

Rated by 1 million+ students
Get app now
Class 8 Foundation Course
Class 9 Foundation Course
Class 10 Foundation Course
Class 11 Foundation Course
Class 12 Foundation Course
JEE COURSE
NEET COURSE
0 votes
95 views
in Mathematics by (54.3k points)
closed by
If the sum of n numbers in the GP 4, 8, 16, ... is 2044 then n is ?
1. 6
2. 7
3. 8
4. 9
5. None of these

1 Answer

0 votes
by (30.0k points)
selected by
 
Best answer
Correct Answer - Option 4 : 9

Concept:

 Let us consider sequence a1, a2, a3 …. an is a G.P.
  • Common ratio = r = \(\frac{{{{\rm{a}}_2}}}{{{{\rm{a}}_1}}} = \frac{{{{\rm{a}}_3}}}{{{{\rm{a}}_2}}} = \ldots = \frac{{{{\rm{a}}_{\rm{n}}}}}{{{{\rm{a}}_{{\rm{n}} - 1}}}}\)
  • nth  term of the G.P. is an = arn−1
  • Sum of n terms of GP = sn = \(\frac{{{\rm{a\;}}\left( {{{\rm{r}}^{\rm{n}}} - 1} \right)}}{{{\rm{r}} - {\rm{\;}}1}}\); where r >1
  • Sum of n terms of GP = sn = \(\frac{{{\rm{a\;}}\left( {1 - {\rm{\;}}{{\rm{r}}^{\rm{n}}}} \right)}}{{1 - {\rm{\;r}}}}\); where r <1
  • Sum of infinite GP = \({{\rm{s}}_\infty } = {\rm{\;}}\frac{{\rm{a}}}{{1{\rm{\;}} - {\rm{\;r}}}}{\rm{\;}}\) ; |r| < 1


Calculation:

Given series is 4, 8, 16, ...

Here, a = 4, r = 2

Sum of n numbers = sn = 2044

To Find: nAs we know that, Sum of n terms of GP = sn = \(\frac{{{\rm{a\;}}\left( {{{\rm{r}}^{\rm{n}}} - 1} \right)}}{{{\rm{r}} - {\rm{\;}}1}}\); where r >1

∴ sn = \(\frac{{{\rm{4\;}}\left( {{{\rm{2}}^{\rm{n}}} - 1} \right)}}{{{\rm{2}}\; - {\rm{\;}}1}}\)

2044 = 4 × (2n - 1)

⇒ 511 = (2n - 1)

⇒ 2n = 512

⇒ 2n = 29

∴ n = 9

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...