Correct Answer - Option 4 : 0

**Concept: **

f(x) is Continuous at x = 0

\(\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\; = \;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\; = f(0)\)

**Calculation:**

f(x) is Continuous at x = 0

\(\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\; = \;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\; = f(0)\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \sin x\; = \;\mathop {\lim }\limits_{x \to {0^ - }} \sin x\; = k\)

\(\Rightarrow \mathop {\lim }\limits_{h \to 0} \sin \left( {0 + h} \right)\; = \;\mathop {\lim }\limits_{h \to 0} \sin \left( {0 - h} \right)\; =k\)

\(\Rightarrow k = 0\)

\(\therefore \;k = 0\)