Correct Answer - Option 4 : 300

**Given:**

In an exam, the passing marks are 37.5%. A got 33.33% more marks than passing marks and B failed by 50 marks. If B's marks are 62.5% of A's marks.

**Concept used:**

Percentage

**Calculation:**

Let the maximum marks be a

Passing marks = \(\frac{{37.5x}}{{100}} = \frac{{3a}}{8}\)

A got 33.33% more marks than passing marks.

A's marks = \(\frac{{3a}}{8} × \frac{4}{3} = \frac{a}{2}\)

B failed by 50 marks

B's marks = \(\frac{{3a}}{8} - 50\)

B's marks are 62.5% of A's marks

⇒ \(\frac{{3a}}{8} - 50 = \frac{a}{2} × \frac{{62.5}}{{100}}\)

⇒ \(\frac{{3a}}{8} - 50 = \frac{a}{2} × \frac{5}{8}\)

⇒ \(\frac{{3a}}{8} - \frac{{5a}}{{16}} = 50\)

⇒ a = 16 × 50

⇒ a = 800

Passing marks = (3a/8) = 300

**∴ The passing marks is 300.**