Correct Answer - Option 1 : 16000

**Given:**

B's monthly salary is 12% more than A's salary. B's monthly expenditure is 31.25% more than A's expenditure. If A's and B's monthly savings are Rs.9000 and Rs.7000 respectively.

**Concept used:**

Percentage

**Calculation:**

Let A's monthly salary be x

B's monthly salary = \(\frac{{112}}{{100}} \times x = \frac{{112x}}{{100}}\)

Let A's monthly expenditure be y

B's monthly expenditure will be = \(y \times \frac{{131.25}}{{100}} = \frac{{131.25y}}{{100}}\)

Savings = Income - Expenditure

⇒ x - y = 9000 -- (i)

⇒ \(\frac{{112x}}{{100}} - \frac{{131.25y}}{{100}} = 7000{\rm{ }}\) -- (ii)

Solving Equation i and ii

⇒ \(\frac{{112x}}{{100}} - \frac{{131.25\left( {x - 9000} \right)}}{{100}} = 7000\ \ \ {\rm{ \{ y = x - 9000\} }}\)

⇒ 112x - 131.25x + 1181250 = 700000

⇒ 19.25x = 481250

⇒ x = 25000

A's monthly expenditure = Income - savings

∴ 25000 - 9000 = **Rs.16000**