Correct Answer - Option 3 : Hexadecimal number system

The correct answer is__ __**Hexadecimal number system.**

- Hexadecimal numbers are used extensively in microprocessor work.
- The hexadecimal number system has a base of 16.
- After reaching 9 in the hexadecimal system, we continue as A, B, C, D, E, F.
- For converting a decimal number to a hexadecimal number, the number is successively divided by 16 with remainders occupying the successive positions from the right.

The procedure is exactly similar to the procedure for converting a decimal number to binary.

For example: N = A_{n} B^{n} + A_{n − 1} B^{n − 1} + . . . + A_{1} B^{1} + A_{0} B^{0} . . .

where, N = number, B = base, A_{n} = (n + 1)^{th} digit in that base.

Converting hexadecimal to the decimal.

Let hexadecimal number =11

So, N = 1*161 + 1*160 = 1*16 + 1*1 =16 +1 = 17

The decimal number 11 is smaller than the hexadecimal number 11.

**Decimal** |
** Binary ** |
**Hexadecimal** |

0 |
0000 |
0 |

1 |
0001 |
1 |

2 |
0010 |
2 |

3 |
0011 |
3 |

4 |
0100 |
4 |

5 |
0101 |
5 |

6 |
0110 |
6 |

7 |
0111 |
7 |

8 |
1000 |
8 |

9 |
1001 |
9 |

10 |
1010 |
A |

11 |
1011 |
B |

12 |
1100 |
C |

13 |
1101 |
D |

14 |
1110 |
E |

15 |
1111 |
F |