Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
53 views
in Calculus by (240k points)
closed by
The value of \(\mathop \smallint \nolimits_0^1 \frac{{{{\sin }^{ - 1}}x}}{x}dx\) is:
1. π log 2
2. \(\frac{2 \pi }{3}\)
3. \(\frac{\pi }{4}\)
4. \(\frac{\pi }{2}log2\)

1 Answer

0 votes
by (238k points)
selected by
 
Best answer
Correct Answer - Option 4 : \(\frac{\pi }{2}log2\)

Let \(I = \mathop \smallint \nolimits_0^1 \frac{{{{\sin }^{ - 1}}x}}{x}dx\) 

Assume sin-1 x = θ

x = sin θ

dx = cos θ dθ

When x = 0: θ = 0

\(x = 1 \)

\(\theta = \frac{\pi }{2}\)

\(I = \mathop \smallint \nolimits_0^{\pi /2} \frac{\theta }{{\sin \theta }} \cdot \cos \theta \;d\theta = \mathop \smallint \nolimits_0^{\pi /2} \theta \cdot \cot \theta \cdot d\theta \)

Let u = θ ; v = cot θ

We have:

\(\smallint uv = u\smallint v - \smallint u'\smallint v\)

\(I = \theta \mathop \smallint \nolimits_0^{\pi /2} \cot \theta \cdot d\theta - \mathop \smallint \nolimits_0^{\pi /2} \left[ {\frac{{d\theta }}{{d\theta }} \cdot \smallint \cot \theta \cdot d\theta } \right]d\theta \)

\( = \theta \cdot \log \left| {\sin \theta } \right|_0^{\pi /2} - \mathop \smallint \nolimits_0^{\pi /2} \log \left| {\sin \theta } \right|d\theta \)

In the range of \(\left[ {0,\frac{\pi }{2}} \right]\;;\sin \theta \) is positive ⇒ |sin θ| = sin θ:

\(I = \theta \cdot \left| {\log \sin \theta } \right|_0^{\frac{\pi }{2}} - \mathop \smallint \nolimits_0^{\pi /2} \log \sin \theta d\theta \)      ---(1)

Let \(\mathop \smallint \nolimits_0^{\pi /2} \log \sin \theta \;d\theta = {I_1}\)      ---(2)

Using \(\mathop \smallint \nolimits_0^a f\left( x \right)dx = \mathop \smallint \nolimits_0^a f\left( {a - x} \right)dx\)  

\({I_1} = \mathop \smallint \nolimits_0^{\frac{\pi }{2}} \log \cos \theta \;d\theta \)      ---(3)

From (2) and (3), we get:

\( 2{I_1} = \mathop \smallint \nolimits_0^{\pi /2} \left( {\log \sin \theta + \log \cos \theta } \right)d\theta \)

\( = \mathop \smallint \nolimits_0^{\pi /2} \log (\sin \theta \cdot \cos \theta ) \cdot d\theta \)

\(= \mathop \smallint \nolimits_0^{\pi /2} \log \left( {\frac{{\sin 2\theta }}{2}} \right) \cdot d\theta \)

\( = \mathop \smallint \nolimits_0^{\pi /2} \left( {\log \sin 2\theta - \log 2} \right)d\theta \)

\( = \mathop \smallint \nolimits_0^{\pi /2} \log \sin 2\theta \;d\theta - \mathop \smallint \nolimits_0^{\pi /2} \log 2 \cdot d\theta \)

\( = \frac{1}{2}\mathop \smallint \nolimits_0^\pi \log \sin 2\theta \;d\left( {2\theta } \right) - \log 2\;\mathop \smallint \nolimits_0^{\pi /2} d\theta \)

Property of integral:

\(\mathop \smallint \nolimits_a^b \;F\left( x \right)dx = \mathop \smallint \nolimits_a^b f\left( t \right)dt\)

\(2{I_1} = \frac{1}{2}\mathop \smallint \nolimits_0^\pi \log \sin \theta \;d\theta - \log 2\;\left| \theta \right|_0^{\pi /2}\)

\( = \mathop \smallint \nolimits_0^{\pi /2} \log \sin \theta \;d\theta - \log 2 \cdot \frac{\pi }{2}\)

\( = \mathop \smallint \nolimits_0^{\pi /2} \log \sin \theta \cdot d\theta - \frac{\pi }{2} \cdot \log 2\)

Using (2), we get:

\(2{I_1} = {I_1} - \frac{\pi }{2}\log 2\)

\( {I_1} = - \frac{\pi }{2}\log 2\)

Substituting valve of I1 in equation (1), we get:

\(I = \frac{\pi }{2} \cdot \log \sin \frac{\pi }{2} - 0 \cdot \log \sin \theta - \left( {\frac{{ - \pi }}{2} \cdot \log 2} \right)\;\)

\( = 0 + \frac{\pi }{2} \cdot \log 2\)

\(I = \frac{\pi }{2} \cdot \log 2\)

For \(0 \cdot \log \sin \theta \;;\;\;P = \mathop {\lim }\limits_{\theta \to 0} \theta \cdot \log \sin \theta = 0\) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...