**Correct option is: (D) \(\frac{2.303 \ RT}{F}\)**

According to Nernst equation

E = \(E_0 - \frac {RT}{nF}\) ln Q

or E = \(E_0 - \frac {8.314 \times 298 \times 2.303}{n\times 96500}\) log Q.

E = \(E_0 - \frac {0.0592}{n}\) log Q.

Therefore, \(\frac{2.303 \ RT}{F}\) = 0.0592