Distance of the point `P(x_2, y_2, z_2)` from the line `(x-x_1)/l=(y-y_1)/m=(z-z_1)/n`, where `l,m,n` are the direction cosines of the line, is

A. `sqrt((x_(2)-x_(1))l+ (y_(2)-y_(1))m + (z_(2)-z_(1))n)`

B. `sqrt((x_(2)-x_(1))^(2)l + (y_(2)-y_(1))^(2)m + (z_(2)-z_(1))^(2)n)`

C. `sqrt((x_(2)-x_(1))^(2) + (y_(2)-y_(1))^(2) + (z_(2)-z_(1))^(2))`

D. `sqrt((x_(1)-x_(2))^(2) + (y_(1)-y_(2))^(2) + (z_(1)-z_(2))^(2) -l(x_(1)-x_(2)) + m(y_(1)-y_(2)) + n(z_(1)-z_(2))^(2)`