Consider the following statements :

S_{1} : Let a,b,c ∈ C and ax^{2} + bx + c = 0 be a quadratic equation. Then b^{2} -4ac = 0 ⇒ roots are real and equal.

S_{2} : Let b,c ∈ I and b^{2} - 4c be a perfect square. Then roots of the equation x^{2} + bx + c = 0 may not be integers.

S_{3} :_{ If the quadratic equations }a_{1}x^{2}_{ }+ b_{1}x + c_{1} = 0 and_{ }a_{2}x^{2}+ b_{2}x + c_{2} = 0 have common root, then a_{1}/a_{2} = b_{1}/b_{2} = c_{1}/c_{2}.

S_{4} : f(x) = a_{1}x^{2}_{ }+ b_{1}x + c_{1} /a_{2}x^{2}+ b_{2}x + c_{2} , g (x) = lx + m/ax + b

where a1 , a2 , l , a are non zero real and other coefficients are also real. Then range of f(x) ≠ range of g(x). State, in order, whether S_{1} , S_{2} , S_{3} , S_{4} are true or false

(A) TTFT

(B) TTTF

(C) FFTT

(D) FFFF