LIVE Course for free

Rated by 1 million+ students
Get app now
0 votes
17.8k views
in Mathematics by (48.3k points)

Find the number of non-negative integral solutions of x + y + z + w = 20.

1 Answer

+1 vote
by (53.7k points)
selected by
 
Best answer

Any one of the four variables can take values from zero to 20 and hence we construct a polynomial in a variable (say x) with x raised to different powers which would constitute the values that any one variable can take when the equation is solved in the manner indicated. We, thus, consider the product expression

(1 + x + x2 + ... + x20)(1 + x + ... + x20)

(1 + x + ....+ x20)(1 + x + ...+ x20)

There are four factors since there are four variables. If we take x4 in the first factor, x5 in the second, x8 in the third, then we take the term x3 in the fourth so that the sum of the powers (4 + 5 + 8 + 3 = 20) is 20. It is then we say that there is a solution corresponding to x = 4, y = 5, z = 8, w = 3. Hence, the number of solutions in the manner required is

Coefficient of x20 in (1 +  x + ....+ x20)4

= Coefficient of x20 in  (1 - x21/1 - x)4

= Coefficient of x20 in (1 - x21)4(1 - x)-4

= Coefficient of x20 in (1 - x)-4

= 23C3

[Note: In (1 - x)-4 coefficient of xn is (n + 3)C3]

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...