Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.6k views
in Parallelograms by (65.5k points)

In Fig., ABC is a right triangle right angled at A, BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that : 

(i) ∆MBC ≅ ∆ABD (ii) ar.(BYXD) = 2ar.(∆MBC) 

(iii) ar.(BYXD) = ar.(ABMN) 

(iv) ∆FCB ≅ ∆ACE 

(v) ar.(CYXE) = 2ar.(∆FCB)

(vi) ar.(CYXE) = ar,(ACFG) 

(vii) ar.(BCED) = ar.(ABMN) + ar.(ACFG).

1 Answer

+1 vote
by (65.3k points)
selected by
 
Best answer

Data : ABC is a right angled triangled at A, BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y.

To Prove: 

(i) ∆MBC ≅ ∆ABD 

(ii) ar.(BYXD) = 2ar.(∆MBC) 

(iii) ar.(BYXD) = ar.(ABMN) 

(iv) ∆FCB ≅ ∆ACE 

(v) ar.(CYXE) = 2ar.(∆FCB) 

(vi) ar.(CYXE) = ar.(ACFG) 

(vii) ar.(BCED) = ar.(ABMN) + ar.(ACFG). 

Proof: (i) Each angle of square is 90°. 

∴ ∠ABM = ∠DBC = 90° 

∠ABM + ∠ABC = ∠DBC + ∠ABC 

∴ ∠MBC = ∠ABD 

In ∆MBC and ∆ABD, 

∠MBC = ∠ABD (Proved) 

MB = AB BC = AD 

∴ ∆MBC ≅ ∆ABD (ASA Postulate) 

(ii) ∆MBC = ∆ABD 

∴ ar.(∆MBC) = ar.(∆ABD) ………… (i) 

AX ⊥ DE, BD ⊥ DE 

∴ BD || AX 

∆ABD and quadrilateral BYXD are on base BD and in between BD || AX. 

ar.(∆ABD) = \(\frac{1}{2}\)× ar.(BYXD) 

BYXD = 2 × ar.(∆ABC) 

BYXD = 2 × ar.(∆MBC) …………(ii) 

(iii) ∆MBC, quadrilateral ABMN are on base MB and in between MB || NC. 

∴ ar.(∆MBC) = \(\frac{1}{2}\) × ar.(ABMN) 

2 × ar.(∆MBC) = ar.(ABMN) 

ar.(BYXD) = ar.(ABMN) ……………….. (iii) 

(iv) Each angle of square is 90°. 

∴ ∠FCA = ∠BCE = 90° 

∠FCA + ∠ACB = ∠BCE + ∠ACB 

∴ ∠FCB = ∠ACE 

In ∆FCB and ∆ACE, 

∠FCB = ∠ACE 

FC = AC 

CB = CE 

∴ ∆FCB ≅ ∆ACE (SAS postulte) 

(v) AX ⊥ DE, CE ⊥ DE (Data) 

∴ CE || AX 

∆ACE, quadrilateral CYXE are on base CE and in between CE || AX. 

∴ ar.(∆ACE) = \(\frac{1}{2}\)ar.(CYXE) 

ar.(CYXE) = 2 × ∆ACE …………… (iv) 

∆FCB ≅ ∆ACE Proved. 

∴ W(∆FCB) = W(∆ACE) …………… (v) 

Comparing (iv) and (v), 

ar.(CYXE) = 2 × ar.(∆FCB) ……………. (vi) 

(vi) ∆FCB, and quadrilateral ACFG are on base CF and in between CF || BG. 

∴ ar.(∆FCB) = \(\frac{1}{2}\) × ar.(∆CFG) 

ar.(ACFG) = 2 × ar.(∆FCB) …………… (vii) 

(vii) ar.(BCED) = ar.(BYXD) + ar.(CYXE) 

∴ ar.(BCED) = ar.(ABMN) + ar.(ACFG). 

[Note: Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...