Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
3.3k views
in Biotechnology by (46.9k points)
retagged by

Explain the induced fit hypothesis of enzyme action with the help of suitable illustrations. 

1 Answer

+1 vote
by (47.6k points)
selected by
 
Best answer

The Induced-fit theory: The key-lock hypothesis does not fully account for enzymatic action; i.e.. certain properties of enzymes cannot be accounted for by the simple relationship between enzyme and substrate proposed by the key-lock hypothesis. A theory called the induced-fit theory retains the key lock idea of a fit of the substrate at the active site but postulates in addition that the substrate must do more than simply fit into the already preformed shape of an active site. 

Rather, the theory 7 states, the binding of the substrate to the enzyme must cause a change in the shape of the enzyme that results in the proper alignment of the catalytic groups on its surface. This concept has been likened to the fit of a hand in a glove, the hand (substrate) inducing a change in the shape of the glove (enzyme). Although some enzymes appear to function according to the older key-lock hypothesis, most apparently function according to the induced-fit theory . 

Typically, the substrate approaches the enzyme surface and induces a change in its shape that results in the correct alignment of the catalytic groups. In the case of the digestive enzyme carboxypeptidase. 

The induced-fit theory 7 explains a number of anomalous properties of enzymes. An example is “non-competitive inhibition.” in which a compound inhibits the reaction of an enzyme but does not prevent the binding of the substrate. In this case, the inhibitor compound attracts the binding group so that the catalytic group is too far away from the substrate to react. The site at which the inhibitor binds to the enzyme is not the active site and is called an allosteric site. The inhibitor changes the shape of the active site to prevent catalysis without preventing binding of the substrate. An inhibitor also can distort the active site by affecting the essential binding group: as a result, the enzyme can no longer attract the substrate.

Related questions

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...