Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
3.0k views
in Heat and Thermodynamics by (50.8k points)
retagged by

Explain the second law of thermodynamics in terms of entropy.

1 Answer

+1 vote
by (48.5k points)
selected by
 
Best answer

The quantity \(\frac{Q}{T}\) is called entropy. It is a very important thermodynamic property of a system.

It is also a state variable. \(\frac{Q_H}{T_H}\) is the entropy received by the Carnot engine from hot reservoir is entropy given out by the Carnot engine to the cold reservoir. For reversible engines (Carnot Engine) both entropies should be same, so that the change in entropy of the Carnot engine in one cycle is zero. But for all practical engines 1 ike diesel and petrol engines which are not reversible engines, they satisfy the relation \(\frac{Q_L}{T_L}\)>\(\frac{Q_H}{T_H}\)

In fact we can reformulate the second law of thermodynamics as follows “For all the processes that occur in nature (irreversible process), the entropy always increases. For reversible process entropy will not change”. Entropy determines the direction in which natural process should occur. 

Entropy increases when heat flows from hot object to cold object. If heat were to flow from a cold to a hot object, entropy will decrease leading to violation of second law thermodynamics. Entropy is also called ‘measure of disorder’. All natural process occur such that the disorder should always increases.

Consider a bottle with a gas inside. When the gas molecules are inside the bottle it has less disorder. Once it spreads into the entire room it leads to more disorder. In other words when the gas is inside the bottle the entropy is less and once the gas spreads into entire room, the entropy increases. From the second law of thermodynamics, entropy always increases. If the air molecules go back in to the bottle, the entropy should decrease, which is not allowed by the second law of thermodynamics. The same explanation applies to a drop of ink diffusing into water. Once the drop of ink spreads, its entropy is increased. The diffused ink can never become a drop again. So the natural processes occur in such a way that entropy should increase for all irreversible process.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...