Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
731 views
in Physics by (50.9k points)
retagged by

Derive an expression for pressure exerted by the gas on the wall of the container?

1 Answer

+1 vote
by (48.6k points)
selected by
 
Best answer

Expression for pressure exerted by a gas: Consider a monoatomic gas of N molecules each having a mass m inside a cubical container of side l.

The molecules of the gas are in random motion. They collide with each other and also with the walls of the container. As the collisions are elastic in nature, there is no loss of energy, but a change in momentum occurs.

The molecules of the gas exert pressure on the walls of the container due to collision on it. During each collision. the molecules impart certain momentum to the wall. Due to transfer of momentum, the walls experience a continuous force. The force experienced per unit area of the walls of the container determines the pressure exerted by the gas. It is essential to determine the total momentum transferred by the molecules in a short interval of time.

A molecule of mass in moving with a velocity \(\vec v\) having components (vx vy , vz ) hits the right side wall. Since we have assumed that the collision is elastic, the particle rebounds with sanie speed and its x-component is reversed. This is shown in the figure. The components of velocity of the molecule after collision are (-vx , vy , v z

The x-component of momentum of the molecule bêfore collision = mvx 

The x-component of momentum of the molecule after collision = -mvx 

The change in momentum of the molecule in x direction = Final momentum – initial momentum 

= -mvx – mvx = -2mvx 

According to law of conservation of linear momentum, the change in momentum of the wall = 2mvx

The number of molecules hitting the right side wall in a small interval of time ∆t.

The molecules within the distance of vx ∆t from the right side wall and moving towards the right will hit the wall in the time interval &. The number of molecules that will hit the right side wall in a time interval ∆t is equal to the product of volume (Avx ∆t) and number density of the molecules n). 

Here A is area of the wall and ii is number of molecules per unit volume \(\frac{N}{V}\) We have assumed that the number density is the same throughout the cube.

Not all the n molecules will move to the right, therefore on an average only half of the n molecules move to the right and the other half moves towards left side.

The no.of molecules that hit the right side wall in a time interval ∆t

In the same interval of time ∆t, the total momentum transferred by the molecules

From Newton’s second law, the change in momentum in a small interval of time gives rise to force.

The force exerted by the molecules on the wall (in magnitude)

Pressure P = force divided by the area of the wall

Since all the molecules are moving completely in random manner, they do not have same speed. So we can replace the term v2x by the average \(\bar v^{2}_x\) in equation (4)

Since the gas is assumed to move in random direction, it has no preferred direction of motion (the effect of gravity on the molecules is neglected). It implies that the molecule has same average speed in all the three direction. So, \(\bar v^2_x\)\(\bar v^2_y\)\(\bar v^2_z\) . The mean square speed is written as

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...