Labelling each of the resistance as shown in the figure below.

Resistance R_{1} and R_{2} are in series

⇒ Rs_{1} = R_{1} + R_{2}

⇒ Rs_{1 }= 3 + 3 = 6Ω

Now Rs_{1} and R_{3} are in parallel.

⇒ \(\frac{1}{R_p}=\frac{1}{R_{s1}}+\frac{1}{R_3}\)

⇒ \(\frac{1}{R_p}=\frac{1}{6}+\frac{1}{3}\)

⇒ \(\frac{1}{R_p}=\frac{1+2}{6}+\frac{3}{6}\)

⇒ R_{p} = \(\frac63\) = 2

⇒ R_{p }= 2Ω* *

**Now R**_{4}, R_{p} and R_{5} are in series.

⇒ R_{eq} = R_{4} + R_{5} +R_{p}

⇒ R_{eq} = 0.5 + 2 + 0.5 = 3Ω

**Hence the Equivalent resistance of the circuit is 3Ω. **

**For Ammeter Reading**

Current (I) = \(\frac{V}{R}=\frac33\) = 1A

**Hence the current reading in ammeter is 1A.**