(a) 45 m

Let the given tower be AC
AC = \(\frac{45\sqrt3}{2}\)m.
When angle of elevation is 30°, length of shadow is \(x\) m.
⇒ ∠ABC = 30°, BC = \(x\) When angle of elevation is 60°, length of shadow is y m.
⇒ ∠ADC = 60°, DC = y
In rt. ΔADC, \(\frac{AC}{DC}\) = tan 60°
⇒ \(\frac{\frac{45\sqrt3}{2}}{y}\) = √3 ⇒ y = \(\frac{45}{2}\) ....(i)
In rt. Δ ABC, \(\frac{AC}{BC}\) = tan 30°
\(\frac{\frac{45\sqrt3}{2}}{x}\) = \(\frac{1}{\sqrt3}\) ⇒ \(x\) = \(\frac{135}{2}\) .....(ii)
∴ x - y = \(\frac{135}{2}\) - \(\frac{45}{2}\) = \(\frac{90}{2}\) = 45 m. (From (i) and (ii))