Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
9.0k views
in Sets, Relations and Functions by (9.2k points)

Relations R1, R2, R3 and R4 are defined on a set A = {a, b, c} as follows :

R1 = {(a, a) (a, b) (a, c) (b, b) (b, c), (c, a) (c, b) (c, c)}

R2 = {(a, a)}

R3 = {(b, a)}

R4 = {(a, b) (b, c) (c, a)}

Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (iii) symmetric (iii) transitive.

Please log in or register to answer this question.

1 Answer

+1 vote
by (15.8k points)

We have set,

A = {a, b, c}

Here, R1, R2, R3, and R4 are the binary relations on set A.

So, recall that for any binary relation R on set A. We have,

R is reflexive if for all x ∈ A, xRx.

R is symmetric if for all x, y ∈ A, if xRy, then yRx.

R is transitive if for all x, y, z ∈ A, if xRy and yRz, then xRz.

So, using these results let us start determining given relations.

We have

R1 = {(a, a) (a, b) (a, c) (b, b) (b, c) (c, a) (c, b) (c, c)}

(i). Reflexive:

For all a, b, c ∈ A. [∵ A = {a, b, c}]

Then, (a, a) ∈ R1

(b, b) ∈ A

(c, c) ∈ A

[∵ R1 = {(a, a) (a, b) (a, c) (b, b) (b, c) (c, a) (c, b) (c, c)}]

So, ∀ a, b, c ∈ A, then (a, a), (b, b), (c, c) ∈ R.

 R1 is reflexive.

(ii). Symmetric:

If (a, a), (b, b), (c, c), (a, c), (b, c) ∈ R1

Then, clearly (a, a), (b, b), (c, c), (c, a), (c, b) ∈ R1

∀ a, b, c ∈ A

[∵ R1 = {(a, a) (a, b) (a, c) (b, b) (b, c) (c, a) (c, b) (c, c)}]

But, we need to try to show a contradiction to be able to determine the symmetry.

So, we know (a, b) ∈ R1

But, (b, a) ∉ R1

So, if (a, b) ∈ R1, then (b, a) ∉ R1.

∀ a, b ∈ A

 R1 is not symmetric.

(iii). Transitive:

If (b, c) ∈ R1 and (c, a) ∈ R1

But, (b, a) ∉ R1 [Check the Relation R1 that does not contain (b, a)]

∀ a, b ∈ A

[∵ R1 = {(a, a) (a, b) (a, c) (b, b) (b, c) (c, a) (c, b) (c, c)}]

So, if (b, c) ∈ R1 and (c, a) ∈ R1, then (b, a) ∉ R1.

∀ a, b, c ∈ A

 R1 is not transitive.

Now, we have

R2 = {(a, a)}

(i). Reflexive:

Here, only (a, a) ∈ R2

for a ∈ A. [∵ A = {a, b, c}]

[∵ R2 = {(a, a)}]

So, for a ∈ A, then (a, a) ∈ R2.

 R2 is reflexive.

(ii). Symmetric:

For symmetry,

If (x, y) ∈ R, then (y, x) ∈ R

∀ x, y ∈ A.

Notice, in R2 we have

R2 = {(a, a)}

So, if (a, a) ∈ R2, then (a, a) ∈ R2.

Where a ∈ A.

 R2 is symmetric.

(iii). Transitive:

Here,

(a, a) ∈ R2 and (a, a) ∈ R2

Then, obviously (a, a) ∈ R2

Where a ∈ A.

[∵ R2 = {(a, a)}]

So, if (a, a) ∈ R2 and (a, a) ∈ R2, then (a, a) ∈ R2, where a ∈ A.

 R2 is transitive.

Now, we have

R3 = {(b, a)}

(i). Reflexive:

∀ a, b ∈ A [∵ A = {a, b, c}]

But, (a, a) ∉ R3

Also, (b, b) ∉ R3

[∵ R3 = {(b, a)}]

So, ∀ a, b ∈ A, then (a, a), (b, b) ∉ R3

 R3 is not reflexive.

(ii). Symmetric:

If (b, a) ∈ R3

Then, (a, b) should belong to R3.

∀ a, b ∈ A. [∵ A = {a, b, c}]

But, (a, b) ∉ R3

[∵ R3 = {(b, a)}]

So, if (a, b) ∈ R3, then (b, a) ∉ R3

∀ a, b ∈ A

 R3 is not symmetric.

(iii). Transitive:

We have (b, a) ∈ R3 but do not contain any other element in R3.

Transitivity can’t be proved in R3.

[∵ R3 = {(b, a)}]

So, if (b, a) ∈ R3 but since there is no other element.

 R3 is not transitive.

Now, we have

R4 = {(a, b) (b, c) (c, a)}

(i). Reflexive:

∀ a, b, c ∈ A [∵ A = {a, b, c}]

But, (a, a) ∉ R4

Also, (b, b) ∉ R4 and (c, c) ∉ R4

[∵ R4 = {(a, b) (b, c) (c, a)}]

So, ∀ a, b, c ∈ A, then (a, a), (b, b), (c, c) ∉ R4

 R4 is not reflexive.

(ii). Symmetric:

If (a, b) ∈ R4, then (b, a) ∈ R4

But (b, a) ∉ R4

[∵ R4 = {(a, b) (b, c) (c, a)}]

So, ∀ a, b ∈ A, if (a, b) ∈ R4, then (b, a) ∉ R4.

⇒ R4 is not symmetric.

It is sufficient to show only one case of ordered pairs violating the definition.

 R4 is not symmetric.

(iii). Transitivity:

We have,

(a, b) ∈ R4 and (b, c) ∈ R4

⇒ (a, c) ∈ R4

But, is it so?

No, (a, c) ∉ R4

So, it is enough to determine that R4 is not transitive.

∀ a, b, c ∈ A, if (a, b) ∈ R4 and (b, c) ∈ R4, then (a, c) ∉ R4.

 R4 is not transitive.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...