(a) Given; \(x^\frac{2}{3} + y^\frac{2}{3}\) = 2 ; differentiating w.r.t to x;

(b) Let the numbers be x, 15 - x.
S (x) = x2 + (15- x)2 = 2x2 - 30x + 225
For turning points;
S'(x) = 4x - 30 = 0
S" (x) = 4 > 0 Therefore maximum
∴ x = \(\frac{15}{2}\) is the point of local maximum of s.
The numbers are \(\frac{15}{2}\), \(\frac{15}{2}\).