1. Given;
y = (logx)cosx, taking log on both sides;
log y = cosxlog(logx),
Differentiating with respect to x;

2. Given; x = 2at2 ⇒ \(\frac{dx}{dt}\) = 4at

3. Given;
x = a(cosθ + θsinθ)
\(\frac{dx}{dθ}\) = a(-sinθ + θcosθ + sinθ) = aθcosθ
y = a(sinθ – θcosθ)
\(\frac{dx}{dθ}\) = a(cosθ – θ(-sinθ) – cosθ) = aθ sinθ
\(\frac{dx}{dθ}\) = \(\frac{aθsinθ}{aθcosθ}\)= tanθ
4. y= xx; Taking log on both sides;
log y = x log x

5. y = (x log x)log logx
Taking log on both sides;
log y = (log log x) [log (xlogx)]

6. \(y = \sqrt{sinx + y}\) ⇒ y2 = sinx + y
⇒ y2 – y = sinx

7. yx = xsin y;
Taking log on both sides;
xlogy = siny log x

8. y = (log x)x + xlogx = u + v

9. y = (sinx)x + sin-1\(\sqrt{x}\)
Let u = (sinx)x ⇒ log u = x log sinx
