Height of the box (x.cm) |
Width of the box |
Volume of the box (v. cm3) |
1 |
24 - 2 x 1 |
1 x (24 - 2 x 1)2 = 484 |
2 |
24 - 2 x 2 |
2 x (24 -2 x 2)2 = 800 |
3 |
24 - 2 x 3 |
3 x (24 - 2 x 3)2 = 972 |
4 |
24 - 2 x 4 |
4 x (24 - 2 x 4)2 = 1024 |
5 |
24 - 2 x 5 |
5 x (24 - 2 x 5)2 = 980 |
6 |
24 - 2 x 6 |
6 x (24 - 2 x 6)2 = 864 |
(ii) Generalise the above table as a function.
V = x(24-2x)2, 0 < x < 12.
(iii) \(\frac{dV}{dx}\) = x.2(24 – 2x)(-2) + (24 – 2x)2
= -4x(24 – 2x) + (24 – 2x)2
= -96x + 8x2 + 576 + 4x2 – 96x
= 12x2 – 192x + 576
For maximum or minimum,

Therefore volume is maximum when x = 4 cm.