We have: \(\sqrt{3 }\)cos x − sin x = 1
Dividing both sides by 2, we get
cos x. \(\frac{\sqrt{3}}{2}\) − sin x . \(\frac{1}{2}\) = \(\frac{1}{2}\)
⇒ cos x . cos \(\frac{\pi}{6}\) − sin x . sin \(\frac{\pi}{6}\) = \(\frac{1}{2}\)
⇒ cos (x + \(\frac{\pi}{6}\) ) = cos ( \(\frac{\pi}{3}\) )
⇒ x + \(\frac{\pi}{6}\) = \(2n\pi\) ± \(\frac{\pi}{3}\)
⇒ x = \(2nx\) ± \(\frac{\pi}{3}\) − \(\frac{\pi}{6}\)
⇒ x = \(2n\pi\) + \(\frac{\pi}{3}\) − \(\frac{\pi}{6}\) or x = \(2nx\) − \(\frac{\pi}{3}\) − \(\frac{\pi}{6}\)
⇒ x = \(2n\pi\) + \(\frac{\pi}{6}\) or x = \(2n\pi\) − \(\frac{\pi}{2}\)