log (1 + sin2x)
= sin2x - \(\frac{sin^4x}{2}\) + \(\frac{sin^6x}{3}\) - ...
(∵ log ( 1 + x) = x - \(\frac{x^2}{2}\)+ \(\frac{x^3}{3}\) ... if 1 ≤ x ≤ 1 and here 0 ≤ sin2x ≤ 1)
= (x - \(\frac{x^3}{3!}\)+ \(\frac{x^5}{5!}\)- ...)2 - \(\frac{1}{2}\)(x - \(\frac{x^3}{3!}\)+ \(\frac{x^5}{5!}\)- ...)4 + \(\frac{1}{3}\)(x - \(\frac{x^3}{3!}\)+ \(\frac{x^5}{5!}\)- ...)6 - .....
(∵ sinx = x - \(\frac{x^3}{3!}\)+ \(\frac{x^5}{5!}\)- ...)
Since,
We consider power of x at the terms x6.
Therefore,
Remove other terms which gives power more than 6.
= (x - \(\frac{x^3}{3!}\)+ \(\frac{x^5}{5!}\)+ ...)2 - \(\frac{1}{2}\)(x - \(\frac{x^3}{3!}\)+ \(\frac{x^5}{5!}\)+ ...)4 + (\(\frac{x^6}{3}\) + ....)
= (x2 + \(\frac{x^6}{(3!)^2}\) - \(\frac{2x^4}{3!}\) + \(\frac{2x^6}{5!}\) + ....) - \(\frac{1}{2}\)(x4 - \(\frac{4x^6}{3!}\)+...) + (\(\frac{x^6}{3}\) + ...)
= x2 - x4(\(\frac{2}{3!}\) + \(\frac{1}{2}\)) + x6(\(\frac{1}{(3!)^2}\)+\(\frac{2}{5!}\)+\(\frac{2}{3!}\)+\(\frac{1}{3}\)) + ....
= x2 - x4(\(\frac{2}{6}\) + \(\frac{1}{2}\)) + x6(\(\frac{1}{36}\)+\(\frac{2}{120}\)+\(\frac{2}{6}\)+\(\frac{1}{3}\)) + ....
(∵ 3! = 6, 5! = 120)
= x2 - x4\((\frac{2+3}{6})\) + x6 \(\times\)\(\frac{10+6+120+120}{360}\) + ....
= x2 - \(\frac{5}{6}\)x4 + \(\frac{256}{360}\)x6 +....
= x2 - \(\frac{5}{6}\)x4 + \(\frac{32}{45}\)x6 +....
Hence,
Expansion of log(1 + sin2x) in power of x at terms of x6 in log(1+sin2x) = x2 - \(\frac{5}{6}\)x4 + \(\frac{32}{45}\)x6 + ....