\(I = \int \frac{\sin x}{\sin(x + a)}dx\)
Let x + a = y
⇒ dx = dy
Substituting in the given integral, we get
\(I = \int \frac{\sin (y- a)}{\sin y\,dy}\)
⇒ \(\sin (y -a) = \sin y \times \cos a+ \cos y\times \sin a\)
\(I = \cos a \int dy - \sin a\int \cot y\,dy\)
⇒ \(I = (\cos a)y - (sin a) \log\sin y\)
⇒ \(I = (\cos a)(x + a) - (\sin a) \log[\sin (x + a) + c]\)