To Prove: \(\sec^{-1}\left(\frac{1}{2\mathrm x^2-1}\right)=2\cos^{-1}\mathrm x\)
Formula Used:
1) cos 2A = 2 cos 2 A – 1
2) \(\cos^{-1}A= \sec^{-1}\frac{1}{A}\)
Proof:
LHS \(=\sec^{-1}\left(\frac{1}{2\mathrm x^2-1}\right)\)
= cos -1 (2x 2 – 1)… (1)
Let x = cos A … (2)
Substituting (2) in (1),
LHS = cos -1 (2 cos 2 A – 1)
= cos -1 (cos 2A)
= 2A
From (2), A = cos -1 x,
2A = 2 cos -1 x
= RHS
Therefore, LHS = RHS
Hence proved.