To Find: The Principle value of \(cot^{-1}(-\sqrt{3})\)
Let the principle value be given by x
Now, let x = \(cot^{-1}(-\sqrt{3})\)
⇒ cot x = \(-\sqrt{3}\)
⇒ cot x= - cot( \(\frac{\pi}{6}\)) ( \(\because -cot\left(\frac{\pi}{6}\right)=\sqrt{3}\) )
⇒ cot x=cot( \(\pi-\frac{\pi}{6}\)) ( \(\because -cot(\theta)=cot(\pi-\theta\)))
⇒ x =\(\frac{5\pi}{6}\)