Correct Answer is \(\frac{\pi}{6}\)
Now, let x = \(cos^{-1}(cos\left(\frac{13\pi}{6}\right)\)
⇒ cos x =cos ( \(\frac{13\pi}{6}\))
Here ,range of principle value of cos is [0, π]
⇒ x = \(\frac{13\pi}{6}\)∉ [0, π]
Hence for all values of x in range [0, π] ,the value of
\(cos^{-1}(cos\left(\frac{13\pi}{6}\right)\)is
⇒ cos x =cos (2π - \(\frac{\pi}{6}\)) (\(\because\) cos ( \(\frac{13\pi}{6}\))= cos (2π - \(\frac{\pi}{6}\)) )
⇒ cos x =cos ( \(\frac{\pi}{6}\)) ( \(\because\)cos (2π - θ)= cosθ)
⇒ x = \(\frac{\pi}{6}\)